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Casimir and pseudo-Casimir interactions in confined polyelectrolytes
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We investigate the pseudo-Casimir force acting between two charged surfaces confining a single
polyelectrolyte chain with opposite charge. We expand the exact free energy to the second order in
the local electrostatic field as well as the replicated polymer density field around the mean-field
~saddle-point! solution. The quadratic terms lead to a fluctuation interaction that is partly due to the
~thermal! Casimir effect for the confined electrostatic field and partly due to the pseudo-Casimir
effect due to the confined replicated polymer density field. We study the intersurface separation
dependence of both effects and show that the pseudo-Casimir effect leads to a long range attraction
between the surfaces that decays with an anomalous algebraic exponent of;1.7, smaller than the
standard exponent of 2 in the case of Casimir interactions. ©2001 American Institute of Physics.
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I. INTRODUCTION

Charged polymers have received much attention over
years for their indisputable importance in industrial applic
tions as well as for their role in fundamental colloid scien
~for comprehensive introductions, see Refs. 1 and 2!. Apart
from the study of polymers in the bulk, their interactio
with surfaces, as well as polymer-mediated interactionsbe-
tween surfaces have been studied on different levels3,4

Though polyelectrolyte interaction with charged surfaces
quite similar to the general interaction of polymers with ne
tral surfaces,5 the long range nature of the Coulomb potent
introduces additional features and difficulties that make th
problems even more difficult to handle.

Most of the work on inhomogeneous polyelectrolyt
was done on the mean-field level and the effect of ther
fluctuations has not been considered at all. The mean-
picture of the behavior of a polyelectrolyte chain confin
between two oppositely charged surfaces that emerged
previous studies6,7 ~see Fig. 1! lets one think that at smal
intersurface separations the polyelectrolyte mediated inte
tions are quite similar to those in the case of neutral po
mers and decay algebraically with separation.3,4 At a critical
value of the intersurface spacing there is a transition of
confined polyelectrolyte chain from a monomodal to a bim
dal monomer density distribution. This means that at su
ciently large intersurface separations the polymer chain is
the average partly electrostatically adsorbed to both surfa
and the remaining part of the chainbridges the region be-
tween the surfaces. The consequence of thesebridging inter-
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actions is an exponentially decaying attraction between
surfaces that persists for all separations greater than the
cal value.6,7 In this respect the charged chain between op
sitely charged surfaces behaves on the mean-field level
like a neutral chain with a finite adsorption energy to the t
bounding surfaces.

Recent theoretical studies8 however point to the conclu
sion that thermal fluctuation effects in Coulombic system
ignored on the mean-field level, can hardly ever be cons
ered as negligible. In the limit of small electrostatic coupli
it has been known for a while that thermal fluctuations in
inhomogeneous Coulomb fluid lead to zero order van
Waals~or equivalently Casimir! forces.8,9 More recent stud-
ies of thermal effects in soft matter in general10,11 are very
much consistent with these findings. It has been establis
that thermally driven fluctuations of order parameters of c
fined systems also lead to long range pseudo-Cas
forces,12 quite similar in nature to ordinary Casimir force
except that instead of being due to electromagnetic field fl
tuations they are a consequence of a general order param
fluctuations~thus pseudo-Casimir interactions!. In view of
this we suspect that similar phenomena should also show
in the study of fluctuation effects of confined inhomogeneo
polyelectrolytes.

In order to prove this conjecture we write the partitio
function for a polyelectrolyte chain confined between tw
oppositely charged planar surfaces in such a way that
were able to expand it to quadratic order in the relevant or
parameters, in this case the local electric field and the re
cated polymer density field~see below!, around the mean-
field profile and evaluate on this level the effect of therm
fluctuations. We note that thermal fluctuations decouple i
two separate contributions: the Casimir contribution due
il:
1 © 2001 American Institute of Physics
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FIG. 1. Schematic representation o
the mean-field solution. For separa
tions between the surfaces smalle
then the critical, the monomer densit
distribution is monomodal~A!. For
separations larger then critical th
monomer density distribution is bimo
dal ~B!, corresponding to partial ad
sorption of the chain to the oppositel
charged surfaces. Parts of the cha
that are not adsorbed act as bridges b
tween the surfaces~C!.
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electric field fluctuations and the pseudo-Casimir contri
tion due to the replicated polymer density field fluctuatio
We show that the effect of thermal fluctuations depends
only one coupling parameteraMF5(4p/3)(sl /t), wheres
is the surface charge density,t is the line charge density o
the polymer chain, andl is the Kuhn’s segment length. De
pending on the value of this parameter the behavior of
system can be successfully described on the mean-field
(aMF@1) or has to be amended by taking into account
fluctuation terms (aMF;1). The most important conse
quence of the fluctuation effects seems to be the long ra
pseudo-Casimir force, with an anomalous algebraic dep
dence on the intersurface separations with an exponent
due to the confined fluctuations of the polymer density fi
that decays slower than the usual Casimir~or equivalently
van der Waals! force.

The plan of the paper is as follows: In order to inves
gate the fluctuation effects we first write the free energy o
confined charged polymer chain between two surfaces in
form of anO(n) scalar field theory. From here the free e
ergy is obtained via the standardn→0 replica trick.13 Since
the mean-field is given by the saddle-point, we then exp
this field theory to the second order around the saddle-p
in both the electrostatic field and the replicated polymer d
sity field. Calculation of the quadratic corrections to t
mean-field free energy that can be performed exactly g
the Casimir and pseudo-Casimir interactions mediated by
confined electrostatic and confined replicated polymer d
sity fields. We investigate the dependence of the regular
fluctuation interaction free energy on the intersurface sep
tion in the limit of small and large spacings compared to
critical separation.

II. MEAN-FIELD THEORY

As a point of departure we shall take a model confin
polyelectrolyte system, composed of two surfaces with
specified surface charge density (s) and a confined, oppo
sitely charged single polyelectrolyte chain of lengthNl , de-
scribed with an Edwards Hamiltonian,

H@r ~s!#5
3

2l
E

0

Nl

ṙ2~s! ds

1
1

2E0

Nl E
0

Nl

V~r ~s!,r ~s8!!dsds8. ~1!
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We assume that the intersegment interactions are given
the unscreened Coulombic formV(r ,r 8)5t2/4pee0 ur
2r 8u, wheret is the charge per unit length. This is a b
artificial since we completely ignore the presence of ot
mobile ionic species such as counterions and salt ions,
represents a clean, tractable model system where fluctua
effects can be studied in detail.

Performing now the Hubbard–Stratonovich transform
tion for the pair interaction potential, going to the grand c
nonical ensemble with a fixed chemical potentialm for the
monomers and adequately removing the closed loop poly
configurations from the partition functionvia then→0 limit
of an O(n) scalar field theory with the fieldc
5(c1 ,c2 , . . . ,cn), we remain with the de Gennes–de
Cloizeaux representation for the free energy of a char
polyelectrolyte chain,14

F~m,b!5 lim
n→0

1

n
logZ~m,b!

5 lim
n→0

1

n
log E Df~r !Dc~r !

3expS 2bE d3r H@f~r !,c i~r !# D , ~2!

where

bH@f~r !,c i~r !#5
1

2

l 2

6 (
i

~“c i !
21

1

2
m (

i
c i

2

1
1

2
bee0~“f!21 ibt (

i
fc i

2 .

~3!

In writing Eq. ~2! we omitted the determinant det(bee0¹2)
from the denominator. As is usual on the one-loop expans
level, this term is exactly canceled by the zero order van
Waals term that one should add to the final total interact
free energy. This point is thoroughly explained in Refs. 9 a
15. See also below.

The path from here will be to obtain the mean-field s
lution of the model defined by Eq.~2! via the saddle-point of
the O(n) scalar field theory along the lines of Ref. 16 an
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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then to evaluate the contribution of quadratic fluctuatio
around the saddle-point to the thermodynamic propertie
the system.

Evaluation of the saddle-point from the field Ham
tonian Eq.~3! is trivial. One notices immediately that all th
c i satisfy the same saddle-point equation and thusc i→c.
With this one can write the dependence of the Hamilton
Eq. ~3! on n explicitly17 and the limitn→0 can be obtained
straightforwardly. One remains with

bF052 lim
n→0

1

n
logZ0

5
1

2E d3r S l 2

6
~“c!21m c21bee0 ~“f!2

1 ibt fc2D , ~4!

where we introduced the mean polymer density fieldc so
that the local monomer density isr5c2 and the local elec-
trostatic mean potentialw5 if. In the planparallel geometry
considered here all the fields depend only on the transv
coordinatez, and the inhomogeneities are confined to t
direction only c5c(z), w5w(z). The saddle-point equa
tions of the Hamiltonian Eq.~3! can thus be written in the
form,

l 2

6

d2c~z!

dz2
5mc~z!12btw~z!c~z!,

~5!

2ee0

d2w~z!

dz2
5tc2~z!.

These mean-field equations are exactly equivalent to th
derived previously6,7 if one takes into account that the poly
electrolyte chain is the only mobile charge in the system~no
counterions and no salt!. The first equation of Eq.~5! is the
equation for the density fieldc(z) of the polymer in an in-
homogeneous external fieldw(z), while the second one is
Poisson–Boltzmann equation for the mean electrostatic
tential w(z) of a charged polymer chain with charge dens
r(z)5tc2(z).

The second equation of Eq.~5! can be solved explicitly
and its solution can be manipulated6 to yield a limiting form
valid close to the boundaries atz.6a, where the potentia
is largest,

ee0w~z!52tE
2a

1a

uz2z8uc2~z8!dz8.2tuzu1O~z2!.

~6!

This expression can be obtained rather straightforwardly
Taylor expanding the solution aroundz56a. In the oppo-
site limit, z.0, we can derive

ee0w~z!.2tE
2a

1a

uuuc2~u!du2tc2~0!z21O~z4!.

Since the mean-field is largest close to the boundaries
will use the approximate expression valid strictly only clo
to z56a in the whole interval. This approximation work
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extremely well everywhere6 except close to the origin wher
z is small anyway. The reason for introducing this addition
but inessential approximation is that it also helps in tra
forming the first of Eqs.~5! from a nonlinear Landau–
Ginzburg-type equation into a linear equation, which can
solved analytically and explicitly in terms of Airy’s
functions.6

The electroneutrality demands that at the bounding s
faces (z56a) we have 2ee0 (]w/]n) 5t (N/S) [s,
wheren is the boundary surface normal. Because of the
penetrability of the boundaries to the polymer chain
should also havec(z56a)50. The unnormalized solution
of the first mean-field equation Eq.~5! can now be obtained
explicitly in the form,

c~x!;Ai~y02x!Bi8~y0!2Bi~y02x!Ai8~y0!, ~7!

where we introduced the dimensionless variablesx5lB
1/3z,

x05lB
1/3a, y056mlB

22/3/l 2, lB5(12bt2/ee0l 2) and
Ai(x) andBi(x) are the standard Airy functions. The depe
dencey05y0(x0) is obtained from the vanishing densit
field boundary conditions at the two bounding surfaces.
derive6 that y0(x0) grows linearly withx0 for largex0 , and
thereforeu05y02x0 asymptotically approaches a consta
u0

`'22.34, while for smallx0 , y0 is negative and behave
approximately likey0'2(p/2x0)2.

The main consequence of the mean-field equation
that for very small intersurface separations the chain is d
orbed with a monomodal density distribution.6,7 In this re-
gime of intersurface separations the interactions between
surfaces are repulsive, decaying algebraically with pl
separation. At a critical value of the intersurface separat
x051.986 the electrostatic attraction between the monom
and the surfaces, or more appropriately the repulsion of
monomers and the electroneutrality condition for the wh
system, causes the chain to adsorb to both surfaces crea
polymer bridge leading in its turn to bridging attraction b
tween the surfaces. This attraction, though exponenti
small, persists for all separations between the surfaces la
than the critical. The intersurface pressure is thus repuls
for x0,1.986 and attractive forx0.1.986. For details, see
Ref. 6.

III. FLUCTUATIONS

We now turn to the contribution of fluctuations aroun
the saddle point to the free energy. First we expand
Hamiltonian Eq.~3! to the second order in deviations from
the mean-fields Eq.~5!. Our treatment of the fluctuation ef
fect will thus be based on a quadratic~one-loop! expansion.
The second functional derivatives of the field Hamiltoni
can be assembled into a Hessian of the fields of Eq.~3!,

H5F 2
l 2

6
¹21m12ibtf 2ibtcn

2ibtcn 2bee0¹2
G , ~8!

wherew andcn are the solutions of the mean-field equatio
Eq. ~5!. While integrating out the mean replicated polym
density field and the mean electrostatic field fluctuations
notice that the functional integral overc i fluctuations can be
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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evaluated directly, giving an explicit dependence of the fl
tuational partition function onn. This is similar to the gen-
eral case treated by Emery.17 The limit n→0 can now be
evaluated explicitly leading to the following contribution o
the fluctuations around the mean-fields in the quadratic o
to the free energy,

bF25 lim
n→0

1

n
logZ2

5
1

2
ln det~2¹2!1

1

2
ln detS 2¹21

6

l 2
m112

bt

l 2
w~r !D

112
~bt2!

ee0l 2E E d3r d3r 8 G~r ,r 8! G0~r ,r 8! c~r !c~r 8!,

~9!

where w(r ) and c(r ) are the solutions of the mean-fie
equations Eq.~5!. The two Green’s functionsG(r ,r 8) and
G0(r ,r 8) are the functional inverses defined as

S 2¹21
6

l 2
m112

bt

l 2
w~r !D G~r ,r 8!5d3~r2r 8!,

~10!
~2¹2!G0~r ,r 8!5d3~r2r 8!.

The first term in Eq.~9! comes from the confined electri
field fluctuations and is in fact the standard zero-order
simir interaction energy18 ~see below!. The second and the
third terms are due to the confined polymer density fi
fluctuations and thus correspond to the pseudo-Casimir in
actions. The free energy Eq.~9! is obtained alreadyafter the
cancellation referred to in the discussion following Eq.~3!
and thus represents the total interaction free energy inclu
the zero order van der Waals contribution. The latter is eva
ated for a slab of thickness 2a with boundaries impenetrabl
to electrostatic fields.

Let us first deal with the two functional determinants
Eq. ~9!. Since the mean-field solution depends only on
transverse coordinatez we need to investigate the function
determinant of an operator of the type2 (d2/dz2) 1V(z)
that can be evaluated in two different ways. One can firs
all find the eigenvaluesln of this operator with the boundar
condition f n(z56a)50. The functional determinant come
out as the product of these eigenvaluesPnln . The other
approach would take into account the van Vleck identit19

involving f 0(z), the eigenfunction with zero eigenvalue an
with boundary conditionsf 0(z52a)50 and f 08(z52a)
51. The logarithm of the functional determinant can thus
written equivalently~up to an irrelevant—in this context—
additive constant! in two different ways19

ln detS 2
d2

dz2
1V~z!D 5(

n
ln ln5 ln@ f 0~z5a!#. ~11!

In what follows we will use both representations togeth
with the Fourier decomposition in the (x,y) plane and will
find both equally inadequate when approaching the crit
Downloaded 14 Jul 2001 to 165.112.138.11. Redistribution subject to A
-

er

-

d
r-

g
-

e

f

e

r

l

intersurface separationx051.986, either from above or be
low, where the mean polymer density field goes throug
monomodal to bimodal transition.

Of the first two terms in Eq.~9! the first one is trivial to
evaluate eithervia the van Vleck relation or the eigenvalu
product representation. First of all we introduce the Four
decomposition in the (x,y) plane with a wave vectorQ,
since we only need to take into account the boundaries in
z direction. This leads to the standard zero-order~thermal!
Casimir interaction in the form

1

2
kBT(

Q
ln detS 2

d2

dz2
1Q2D

5
SkBT

4p E
0

`

QdQ lnS coshQa sinhQa

Q D , ~12!

whereS is the total area of the interacting boundary surfac
The second term is trickier. First of all we again intr

duce the Fourier decomposition in the (x,y) plane with a
wave vectorQ and invoke the approximate solution Eq.~6!.
Using again the van Vleck identity we derive

1

2
kBT(

Q
ln detS 2

d2

dz2
1Q21

6

l 2
m112

bt

l 2
w~z!D

5
SkBT

4p E
0

`

QdQ ln ~C~Q,a!S~Q,a!!, ~13!

where we decomposed the determinant of the operator
two separate contributions stemming from symmetric a
antisymmetric modes,

C~Q,z!5Bi8~y~Q!!Ai~y~Q!2lB
1/3z!

2Ai8~y~Q!!Bi~y~Q!2lB
1/3z!,

~14!
S~Q,z!5Bi~y~Q!!Ai~y~Q!2lB

1/3z!

2Ai~y~Q!!Bi~y~Q!2lB
1/3z!,

wherey(Q)5lB
22/3(Q21 (6m/l 2)) while Ai(x) andBi(x)

are the standard Airy functions.20 The Airy function solutions
are of course a consequence of the approximation Eq.~6! for
the mean electrostatic potential. The free energy Eq.~13! still
needs to be properly regularized by subtracting the infin
bulk and surface terms, see below.

In what follows we introduced also these dimensionle
variables: q25lB

22/3Q2 and u(q,x,x0)5y(q,x0)2x5q2

1y0(x0)2x5u0(x0)1q21x02x. Here y0(x0) is the larg-
est zero of the symmetric functionC(y0(x0),x0) which cor-
responds exactly to the zero of the mean-field solution
~7! at the two bounding surfaces.6

The third term in Eq.~9! appears to be the most difficu
one to evaluate but fortunately it is possible to prove t
within the approximation Eq.~6! its contribution to the fluc-
tuation free energyF2 is in fact negligible compared to th
other two, i.e., Eqs.~13! and ~14!. Taking into account the
approximate form for the mean electrostatic potential Eq.~6!
the last term in Eq.~9! can be evaluated explicitly leading t
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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12
~bt2!

ee0l 2E E d3r d3r 8 G~r ,r 8! G0~r ,r 8! c~r !c~r 8!

5
lB

~ee0!
E

2a

1a

dzuzuG~z,z8,Q50!, ~15!

where we took into account that the mean-field solutionc(r )
depends only on the transverse coordinatez and that again
we can introduce the Fourier decomposition in the (x,y)
plane with a wave vectorQ. The magnitude of the coupling
contribution Eq.~15! turns out to be much smaller than th
other two, Eqs.~12! and~13!, and can thus be safely ignore
in numerical computations.

The fluctuation free energy,F2 which is thus composed
only of the contributions from the fluctuational determinan
of the electrostatic field and the replicated polymer den
field, still contains the divergent bulk and surface parts
gether with the interaction terms.9,18 F2 is thus formally in-
finite. This infinity can be regularized by subtracting the
finite bulk and surface contributions18 and thus in forming
the regularized fluctuation free energy,

W2~a!5F2~a!2F 2
`~a!.

Here F 2
`(a) stands for the form of the fluctuation free e

ergy for large values of the argument but evaluated a
finite a.18

Using now the standard form for the mean-fie
pressure7 and adding to it the fluctuation contribution, on
can write for the total pressure between the boundary
faces,
r

is

-
.5

o
te
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n
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-
e-
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p~a!5pMF1pFL@df#1pFL@dc#

5
1

2
kBTm c2~z50!2

kBT

8p

z~3!

~2a!3
1pFL~a!, ~16!

where the first term on the r.h.s. derives from the mean-fi
solution, the second one derives from the Casimir term st
ming from the electrostatic field fluctuations, first term in E
~9! and the third one derives from the pseudo-Casimir ter
stemming from the replicated density field fluctuations, s
ond term in Eq.~9!, with

pFL~a!52
1

SS ]W2~a!

]~2a! D . ~17!

The next section deals with the evaluation and regulariza
of the fluctuation terms in Eq.~16!.

IV. RESULTS: LARGE INTERSURFACE SEPARATION

We will first have to regularize the divergent expressi
Eq. ~13! by subtracting the divergent terms explicitly in th
limit of large x0 ~to be quantified below!. Whenx0 is large
enough the argumenty5u1x0 of the Airy functions in Eq.
~14! becomes large too and we can use the asymptotic
pansion formulas20 for the Airy functions to explicitly find
the divergent terms inF 2

`(a). The regularized free energy i
then
W2~x0!5
SkBT

4p E
u0

`

du lnS ~Bi8~u1x0!Ai~u!2Ai8~u1x0!Bi~u!!~Bi~u1x0!Ai~u!2Ai~u1x0!Bi~u!!

~BiL8~u1x0!Ai~u!2AiL8~u1x0!Bi~u!!~BiL~u1x0!Ai~u!2AiL~u1x0!Bi~u!!
D , ~18!
mi-
ced
rce

s

sult
ree
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nnot
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id

ua-
where AiL , BiL , AiL8 , and BiL8 are the lowest orde
asymptotic expressions for the Airy functions.20 The next
order in the asymptotic expansion of the Airy function

AiL2(t)'20.07(2
3t

3/2)21AiL(t) and in order for it to be neg
ligible, t has to be large enough, typically larger than 1
This leads to the conditionu0(x0)1x0.1.5, which yields
roughly thatx0 has to be larger than'3 if our calculation is
to be accurate to within a few percent. For smaller values
the intersurface separation the form of the regularized in
action free energy Eq.~18! does not work.

Figure 2 shows the dependence of the dimension
fluctuational free energyW2 on the dimensionless separatio
x0 . As already stated the regularization procedure Eq.~18!
can only be used for sufficiently large intersurface spaci
The log–log plot~see the inset of Fig. 2! reveals that asymp
totically the fluctuational contribution with an algebraic d
cay prevails. From the inset of Fig. 2 we read that the f
energy decays asymptotically asx0

21.7 and we also show how
fast this asymptote is approached. The free energy stay
the asymptote essentially for allx0 larger than about 6.
.

f
r-

ss

.

e

on

The algebraic decay of the free energy and conco
tantly of the pressure, indicates that the fluctuation indu
force has a much longer range than the mean field fo
which decays approximately exponentially.6,7 Also it has a
longer range than the zero-order Casimir~or equivalently the
zero order van der Waals! interaction free energy that decay
asx0

22.
There is also no obvious connection between this re

and the behavior of the fluctuation part of the interaction f
energy of a system composed of unconnected counter
treated on the same level of approximation.21 In that case the
fluctuation free energy decays asx0

22 ln x0 , which is much
faster thanx0

21.7.

V. RESULTS: SMALL INTERSURFACE SEPARATION

For small plate separations the above procedure ca
work because in that case we cannot write down explic
the asymptotic form of the Airy functions that would be val
in the whole range of integration in Eq.~13!. We found out
that the best way to approach the evaluation of the fluct
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. The regular part of the fluctuational free ener
F5W2 in the limit of large separations~see main text!
plotted with respect to the dimensionless separationx0 .
The region around the critical separationx051.986,
where the approximations are doubtful, is marked w
a box. On the inset there is the same plot in the log
rithmic scale (logu F/F* u). One can read from the inse
that the dependence of the free energy on the separa
is algebraic with the exponent around 1,7 (W2

}x0
21,7). This power law asymptote is depicted with

dotted line. The constantF* is defined as F*
5SkTlB

2/3/16p.
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,
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e
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ev-
imal
tion determinant in this limit is via a perturbation analys
using the eigenvalue representation of the functional de
minant Eq.~11!.

The perturbative treatment of the evaluation of Eq.~13!
can be introduced as follows. The differential equation
have to solve is

S 2
d2

dx2
1q21y0~x0!1ux2x0u D c50. ~19!

The last term can be treated as a linear perturbation pote
V(x)5ux2x0u. What we will do now is to evaluate the de
terminant of the operator in Eq.~19! in the form of a pertur-
bation expansion inV(x) up to and including the first order
The order zero of the perturbation expansion of the deter
nant of the operator Eq.~19! gives

detS 2
d2

dx2
1q21y0D 5c0

0~x0!5
sinh 2Aq21y0x0

2Aq21y0

.

~20!

The final integration over the wave vectorQ has to be di-
vided into two parts becausey0 is negative, leading to

W 2
05

SkBTlB
2/3

16px0
2 F E

0

p

wdw ln
sinw

w
2

z~3!

4 G . ~21!

To obtain the first order term in the perturbation expa
sion we shall use the product of the eigenvalues represe
tion of the determinant of the operator which leads to
following first order form of the free energy:

F 2
15

kBTlB
2/3S

4p E
0

`

qdq(
N

ln lN
1 , ~22!

wherelN
1 represents the first order correction to the eig

value of the differential equation Eq.~19!. This correction
can be evaluated by standard formulas of the perturba
theory22 leading to the following result:
Downloaded 14 Jul 2001 to 165.112.138.11. Redistribution subject to A
r-

e

ial

i-

-
ta-
e

-

n

lN
1 5lN

0 2
,NuV~x!uN.

,NuN.

5lN
0 2

*0
2x0ux2x0usin2~Np/2x0!dx

*0
2x0 sin2@~Np/2x0!x#dx

5lN
0 1

x0

2
, ~23!

so the sum of the first order corrections to the log of t
determinant of the operator Eq.~22! is

(
N

ln lN
1 '(

N
ln lN

0

1
x0

3

p2 (N
1

N2211~2x0 /p!2@q21~x0/2!#
.

~24!

Since the first term in this expression has already been
culated, we now focus on the second one. This term is o
ously divergent. If we calculated the bulk contribution, the
would be an integral overN instead of the discrete sum
which is a consequence of the boundary conditions. T
regularized free energy is thus18 obtained as the differenc
between the sum and the integral of the same express
After some algebra the result of this manipulation is

W 2
15

SkBTlB
2/3x0

16p F1

2E0

A12~2x0
3/p2!

dwS p~cothpw

2cotpw21!2 ln
11w

12w
12 arctan

1

wD
1

1

2EA12~2x0
3/p2!

`

dwS p~cothpw21!

12S arctan
1

w
2

1

wD D G . ~25!

Even without really calculating the second order we can n
ertheless say something about its magnitude. The max
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. The regular part of the fluctuational free ener
F5W2 in the limit of small separations. The regio
around the critical separationx051.986, where the ap-
proximations are doubtful, is again marked with a bo
The zero-order approximation is shown dashed and
result up to the first order solid. The error bars repres
the maximal possible error of the first order result. T
inset represents the log–log plot of the free ener
wherefrom we deduce that for small separations t
fluctuation free energy scales asx0

22. The constantF*
is defined in Fig. 2.
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difference between the first and the second order perturba
terms can be obtained in standard notation as22

dlN
1 <

1

Dl
@^NuV~x!2uN&2~^NuV~x!uN&!2#, ~26!

where Dl is the minimal difference betweenlN and any
other lM . A short calculation then yieldsdl1/l1

< x0
3/14.8. As expected, the reliability of the first order res

drops as we move towards largerx0 , i.e., towards the mean
field phase transition from below.

Figure 3 shows the first and the second perturbation
der of the regularized fluctuation free energy at small int
surface separations. The pressure obviously changes sig
sufficiently large separation (x0 larger than;1.68 in Fig. 3!.
For small enough separations the free energy scales app
mately asx0

22 which is the same scaling form as for th
mean-field part. It seems to us that the change in sign of
pressure close to the transition pointx051.986 is not due
entirely to artifacts of the first order perturbation theory f
Downloaded 14 Jul 2001 to 165.112.138.11. Redistribution subject to A
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sufficiently large intersurface separations, but could conce
ably survive all higher order perturbation terms. Unfort
nately all approximation schemes that we could think
broke down close to the transition point and we thus have
leave the important question about the behavior of the fl
tuation component of the pressure close to the transition
answered.

VI. DISCUSSION

We have described all the contributions to the fluctu
tional free energy of the system. To evaluate the fluctuatio
part of the pressure between the two surfaces the deriva
of the regularized free energy with respect tox0 have been
performed numerically. The total pressure can thus be
tained by simply taking the sum of mean-field and fluctu
tional contributions Eq.~16!. Figure 4 shows the dimension
less total pressure as a function of the dimensionl
separationx0 which can be written, Eq.~16!, as
e
re-
e
e

ole
g
e
—
a
-

d

FIG. 4. The mean field pressure~dotted–dashed line!
and the total pressure (aMF54, thick line andaMF

5100, thin line! between two plates as a function of th
separation in the logarithmic scale. The uncertain
gion aroundx051.986, where the approximations ar
doubtful, is marked by a box. The box contains only th
mean-field results which can be evaluated for the wh
range ofx0 values. One can clearly observe the lon
range tail stemming from the thermal fluctuations of th
monomer density field. Inset shows the total pressure
mean field plus fluctuational—between two plates as
function of the separation for different values of param
eteraMF54100. A large deviation from the mean fiel
result is obtained foraMF54, whereas fluctuations
hardly matter foraMF5100. The constantp* is de-
fined asp* 5s2/2ee0 .
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p~x0!5pMF1pFL@df#1pFL@dc#

5
kBT

2

lBl 2s

8 t
y0~x0!c̃2~0!2

kBTz~3!lB

64px0
3

2lB
1/3 d

d~2x0! S W2~x0!

S D
5p* F y0~x0!c̃2~0!2

z~3!

4aMFx0
3

1
f ~x0!

aMF
G , ~27!

wheref (x0) is a function ofx0 only, c̃(0) is the normalized
dimensionless c, aMF5(4p/3)(sl /t), and p*
5kBTlBaMF /16p 5 s2/2ee0 . The parameteraMF depends
on the charge density on the platess, the linear charge den
sity on the polyelectrolyte chaint and on the segment lengt
of the polyelectrolytel . If we put in experimentally reason
able values ofs'e0/1,35 nm2, then aMF is about 100 for
DNA ~a relatively stiff polyelectrolyte! and around 4 for hy-
aluronic acid ~a relatively flexible polyelectrolyte!. Obvi-
ously the largeraMF the less important will the fluctuation
effects be and the more accurate will be the mean-field
sult.

Figure 4 shows the complete pressure Eq.~27! as a func-
tion of the dimensionless separation for different values
the coupling parameteraMF . As already stated we were un
able to analyze the behavior of the interaction pressure c
to the mean-field transition point. Our failure could indica
that close to the transition point our harmonic approach
the fluctuations breaks down. This would not be totally u
expected since we are dealing with a continuous transitio
the distribution of the polyelectrolyte density that apparen
has all the attributes of a second order phase transition,
large fluctuations close to the transition point. We will ho
ever not pursue this line of thought here.

It is clear from Fig. 4 that the effect of the fluctuation
on the intersurface force can be profound. First of all
fluctuations modify the force at small separations making
less repulsive if compared to the mean-field case. Since
the mean-field as well as the fluctuation contribution to
free energy scale asx0

22 ~but with a different sign! it appears
that the effect of the fluctuations is simply to renormalize
magnitude of the pressure but not its scaling form. If o
would thus try to fit the completep(a) with pMF(a) one
would have to introduce a smaller effective charge on
surfaces for the fit to make sense.

At large separations the behavior ofp(a) is completely
different from the behavior ofpMF(a). What the fluctuations
do is that they provide a long range algebraic tail to
interactions, which overwhelms the exponentially scree
mean-field attraction at large intersurface separation. The
gebraic fluctuation tail decays with an anomalous expon
of 1.7, that makes the polyelectrolyte mediated fluctuat
interactions even longer ranged than the standard van
Waals interactions. This in itself is one of the main conc
sions of our work. It is also this long ranged tail that
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probably most amenable to experimental observation
verification. Since the fluctuation effects are stronger
smalleraMF we predict that they should be easier to meas
for very flexible polyelectrolytes, such as hyaluronic acid
opposed to DNA.

The main drawback of this work is that the fluctuatio
effects have been treated on a harmonic level whicha priori
assumes that they are small. However what saves us he
that the mean-field interactions decay exponentially wher
the fluctuation interactions decay algebraically. This is diff
ent than in the case of a simple, i.e., unconnected, Coulo
fluid such as an inhomogeneous electrolyte. In that case
the mean-field as well as the fluctuation interactions de
exponentially but the mean-field interactions have a ra
twice as long as the fluctuation interactions.9 The case of
polyelectrolytes is in this respect fundamentally different: t
range of fluctuation interactions islarger then the range of
mean-field interactions and the use of harmonic approac
fluctuations is probably better grounded in this case.23–27
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